インダクタ

モーター保護:リレーは何を言っていますか?インテリジェントリレーを使用して、モーターを保護します
運動保護リレーは、過電流、位相損失、電圧不均衡などの問題によって引き起こされる損傷とダウンタイムから保護します。昔ながらの過負荷リレーとは異なり、最新のリレーは、どの条件がシャットダウンをトリガーしたかをオペレーターに伝えることができるインテリジェントな電子デバイスです。このホワイトペーパーは、一般的に遭遇するアラーム条件の種類をカバーし、是正措置に関するヒントを提供します。 詳細を確認するにはダウンロードしてください。 ...

サードオーバートーンIC結晶の利点と課題
低周波の基本結晶を必要とするオンボードオシレーターを備えたICSは一般的ですが、現在はIC周波数乗数には3番目のオーバートーン結晶のより高い周波数が必要です。ただし、その基本的な実装と比較して、3番目のオーバー(3OT)クリスタルオシレーターはより複雑で、クリスタル特性が異なるため、反応性要素が追加され、ゲインが高くなります。 このホワイトペーパーをダウンロードして、詳細を確認してください。 ...


R&S®RTPを使用したリアルタイムの記者
多くの場合、必要かつ複雑なタスクであるSeembeddingは、統合されたハードウェアおよびソフトウェアソリューションにより簡単になります。...

医療電源:トレンド、課題、設計アプローチ
医療電子機器は小さくなっています。もちろん、これはすべての電子機器について言えますが、サイズと減量の圧力が最大であるのは医療分野です。病院のベッドサイド環境は非常にスペースに制約されているだけでなく、家、医師のオフィス、車や飛行機でも、より多くの機器を使用する傾向があります。これにより、電源メーカーに特にプレッシャーが発生し、製品のサイズが縮小されています。 詳細については、このホワイトペーパーをダウンロードしてください。 ...

スイッチモードの電源用にEMI入力フィルターを最適化します
ほぼすべてのスイッチモード電源(SMPS)には、電力線上のSMPSの障害を抑制するために、EMI(電気磁気干渉)入力フィルターが必要です。設計に入力フィルターを持つこの要件により、電力線に接続されたシステムの他の部分でマイナスの効果が発生しないことが保証されます。したがって、入力フィルターの設計と検証は、典型的な電源設計中の主要なタスクです。 このドキュメントでは、2つのオシロスコープチャネルを使用してコモンモードと微分モード分離を分離する方法について説明します。この分離アプローチは、ノイズセパレーターのような追加のハードウェアコンポーネントなしで機能します。デザイナーは、コモンモード(CM)とディファレンシャルモード(DM)ノイズを区別できます。ドミナントモードに関するこの追加情報は、入力フィルターを非常に効率的に最適化する機能を提供します。 ...

EGAN FETSを使用して、DC-DCフォワードコンバーター効率を改善します
DC-DCコンバーター設計者は、同期整流と窒化ガリウムトランジスタを備えた前方コンバーターを使用することにより、より低い電力レベルでより高い電力密度を達成できます。非常に典型的なアプリケーションの1つは、26...

EGAN FETベースのバックコンバーターによるベンチマークDC-DC変換効率
高出力密度と高出力を必要とするが、電気分離を必要としないアプリケーションの場合、バックコンバーターは長年にわたって主力トポロジでした。過去数年にわたるバックコンバーターの改善は、Power...

XPのヒントとトリック
XP Powerは、次のデザインに役立つ電源設計に関するアドバイスを提供します。ほとんどのエレクトロニクスエンジニアは、第一原則に基づいてAC/DC電源を設計できますが、実際の信頼性と効率の改善が現れるのは、設計の慎重な改良によるものです。 このホワイトペーパーでは、XP...


プロトタイプからポスト展開まで:Linuxの決定ポイント
埋め込まれたソリューションを開発することは旅になる可能性があります。すべてのアプリケーションが旅の同じ場所から始まるわけではなく、同じ開発パスをとるわけではありませんが、関連するステップに共通のテーマが適用されます。 この電子書籍では、この旅を読者に紹介し、開発中の重要な考慮事項に触れます。 続きを読むには今すぐダウンロードしてください! ...

太陽ユデンリチウムイオンコンデンサ:効果的なEDLC置換
受け入れられたエネルギーソリューションである従来の電気二重層コンデンサ(EDLC)には、自己排出特性、エネルギー密度、信頼性、寿命、熱設計に関連する多くの顕著な欠点があります。太極拳のリチウムイオンコンデンサはこれらの問題を克服し、EDLCの効果的な代替品です。リチウムイオンコンデンサはハイブリッドコンデンサであり、EDLCおよびリチウムイオン二次電池(LIB)の両方の最良の特性を特徴としています。 詳細については、このホワイトペーパーをダウンロードしてください。 ...

Toshiba SpikeKiller®およびAmobeads®を使用したノイズ抑制
このペーパーでは、アモルファスコアがどのように作られているかを簡単に説明し、スパイクキラーとアモベッドの小さな飽和インダクタを使用して、出力ノイズの主要なソースであるダイオードの回復特性を改善する方法を説明しています。 東芝アモルファスコアの製造は、溶けたコバルトベースの合金が回転、冷却ローラーの表面に注がれるプロセスであるウルトラクエンシングによって行われます。 詳細については、このホワイトペーパーをダウンロードしてください。 ...

ループゲインデジタル再設計
2つの方法を使用して、電源コンバーターのループゲインをデジタルで再設計することができます:デジタル再設計方法と直接デジタル設計方法。デジタル再設計法では、コントローラーは連続時間ドメインで設計され、離散時間形式に離散化されます。 直接デジタル設計法では、連続時間ドメインの制御オブジェクトが最初に離散時間ドメインに変換され、コントローラー設計がこのドメインで実行されます。 このホワイトペーパーでは、連続時間システム離散化近似の観点から、ループゲインデジタル再設計と電源設計の関連事項について説明します。 詳細については、ダウンロードしてください。 ...
Electronic Pro Tech Publish Hub にサインアップする
サブスクライバーとして、アラートを受信し、常に更新されるホワイト ペーパー、アナリスト レポート、ケース スタディ、ウェビナー、ソリューション レポートのライブラリに無料でアクセスできます.